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Abstract. We study a simple model mimicking the two-dimensional growth of a solid interface
B through a liquid L in presence of particles A which are pushed by the advancing front. The
model considers a short-range repulsive interaction between the particles and the advancing
front (the so-called Uhlmann, Chalmers and Jackson mechanism). As particles are pushed
by the advancing front, this leads to the formation of aggregates which are hindrances to the
growth and which can be trapped leading to the formation of internal patterns. A transition
between indefinitely growing clusters and frozen ones takes place for a critical particle fraction
xc = 0.560± 0.005 which is larger than the critical fraction of the corresponding epidemic
model with static particles. At that critical thresholdxc, both percolating clusters and internal
patterns are numerically found to be fractal with the same dimensionDf = 1.87± 0.03 close
to the classical percolation exponent 91/48. The correlation length exponentν is found to be
ν = 1.34± 0.08 close to the classical percolation exponent 4/3. The criticality of the internal
patterns is unexpected.

Aggregration of particles is a common phenomenon in nature [1]. During the past decades,
much work has been done in order to understand the kinetics and growth morphologies of
various aggregates. Several models such as the diffusion-limited aggregation (DLA) [2] and
the cluster–cluster aggregation (CCA) models [3] have been imagined. The structures of the
aggregates have been well described through the fractal [4] and multifractal concepts [5].

However, less attention has been paid to the aggregation of particles pushed by an
advancing interface due to some repulsion. The repulsive short-range interaction between
a solidifying front and a single particle has previously been studied by Uhlmann, Chalmers
and Jackson (UCJ) [6]. The UCJ mechanism was intended to describe the trapping or not
of a single particle depending on the particle size, the interfacial free energies and the
growth rate of the interface [6]. For a given value of the growth rate and of the interfacial
liquid/particle, liquid/solid and particle/solid free energies, it was found that there exists a
critical particle size below which a particle can be indefinitely pushed by the front and above
which a particle is trapped in the crystal matrix. However, the physics of the multiparticle
problem with possible aggregation was never considered to our knowledge.

Such a multiparticle problem is of great interest in, for example, the field of crystal
growth and, more precisely, for the decoration of a crystal with impurities or secondary
phases [7]. The basic example of this is the growth of a crystal from a melt [8], i.e. the
growth of a solidifying phase B from a liquid phase L following the basic reaction

L → B (1)
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taking place in the presence of impurities (or particles) of solid phase A. This is the case
of, for example, organic crystal growth in the presence of metallic particles [6]. The case
of carbon nanotube growth in the presence of cobalt particles could also be related to this
work [9]. One should note that up to now in the literature, most examined reactions look
as ‘theoretically simple’ as equation (1) [10]. Another but more complex case is that where
the A-particles are partially or not consumed in the chemical reaction

A + L → B (2)

which is that of an incomplete or not peritectic reaction. Sometimes unconsumed A-particles
are trapped by the advancing front. Such an incomplete peritectic reaction is, for example,
encountered in superconducting YBa2Cu3O7−δ(≡ B) compounds [11, 12]. The A-particles
(made of the non-superconducting phase Y2BaCuO5) are known to influence electrical
properties such as the critical current densityJc [13]. Thus, the incomplete reaction (2) is
of interest.

It is therefore of interest to examine case (2) in which particles can furthermore
be pushed away leading to an aggregation process on the front. In such a case, the
characteristics of the aggregates of particles trapped by the front should be studied. A
simplification used here will be to consider the A-particles to be chemically inactive and of
constant size. We thus propose a growth model which considers aUCJ-like mechanism, i.e.
a repulsive short-range dynamical interaction between a growing front and particles. To our
knowledge, this is the first time that aUCJ-like process has been implemented in a growth
model for a multiparticle system. The model is constrained to be as simple as possible. The
number of A-particles is fixed to be a constant. This inactivity is valid to model equation (2)
if the A-particles are large enough to be not totally consumed by the reaction (2), i.e. if the
dissolution rate of the A-particles is slower than the growth rate of the B-phase (as in the
melt-texturation process of YBa2Cu3O7−δ compounds). This restriction, however, allows
for various extensions and applications in further work. Beside the time dependence of the
A-particle concentration and extensions to other types of interfaces (such as two unmixing
fluids) are obvious, non-solid particles can also be envisaged such as non-coagulating liquid
droplets or vesicles. Many other spreading phenomena (epidemia, dielectric breakdown,
gelation, etc) are covered by the present study. In the following, we will discuss the model
in terms of a solid/liquid interface because it is more traditional for theUCJ mechanism.

The model was specifically studied on a square lattice (d = 2) where each site can
receive a liquid unit (phase L), a solid unit (phase B) or a particle (phase A). One should
note that in the present model, one site can contain at most one phase or one particle.
Initially, all sites are turned into the liquid phase except for a fractionx of sites which each
contain an A-particle. The initial spatial distribution of particles is supposed to be random.
The growth is initiated by flipping one liquid unit into the solid state (B) at the centre of
the lattice (following the reaction of equation (1)). At each simulation step, all liquid sites
in contact with the so-called cluster (B) are selected. One of them is randomly chosen and
is turned into the solid state of phase B (following equation (1)). Such a mechanism is
equivalent to a classical Eden growth [14]. TheUCJ-like mechanism is then introduced as
follows. If a particle is touched by the newly added solid unit, the former makes a random
move towards a nearest-neighbour liquid site reducing the contact with the solid front. This
is relevant if we consider that all particles are smaller in size than theUCJ critical particle.
If the particle cannot reduce its number of nearest-neighbouring solid units by such a jump,
the position of the particle remains unchanged and is trapped by the front in the cluster.

One should note that a particle can be trapped in two different ways: (i) a particle
can be trapped directly by the front because the former one cannot reduce its number of
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nearest-neighbour solid units; or (ii) the displacement of a particle can be forbidden by the
presence of other particles on neighbouring sites leading further to the trapping. This is
physically relevant for a particle size smaller but close to theUCJ critical size since the
pushing of aggregates is not considered here.

The selection, growth and particle motion process described here above is then repeated
a desired numberN of times if possible. Indeed, the growth can sometimes stop if there is no
liquid site in contact with the cluster. The growth is irreversible (i.e. far from equilibrium)
and history dependent (i.e. non-Markovian).

Before numerically investigating the model, let us emphasize the expected cases for
particular parameter values. Without particles (x = 0), the model trivially reduces to the
most simple version of the Eden model [15]. In such a case, a round and compact cluster
grows indefinitely and fills the entire available space on the lattice. Another particular
case arises when theUCJ mechanism is neglected, all particles are then static and the
model reduces to the simple epidemic model [16]. We recall that for the epidemic (e)
model, a transition of the random percolation universality class takes place at the critical
fraction x(e)

c ' 0.407 above which the cluster cannot grow indefinitely and below which
the cluster (or epidemia) can grow for ever. At this critical fractionx(e)

c of the static
particles, the growing clusters (or epidemia) are fractal with a fractal dimensionDf = 91/48
[16] corresponding to the fractal dimension of unconstrained percolation [17]. Thus, the
difference between the epidemic and the present model is that the latter one allows for a
spatial reorganization of the particles. One expects to observe in the present model the
formation of particular structures of particles.

Figure 1. Three clusters of sizeN = 10 000. The external perimeter as well as the trapped
particles are drawn. Three different values of the parameterx for the initial (random) distribution
of A particles are illustrated: (a) for x = 0.20; (b) for x = 0.41 which is close to the critical
valuex

(e)
c of the epidemic model; and (c) for x = 0.56 close to the critical value of the present

model.

Figure 1(a)–(c) presents three typical clusters containing eachN = 10 000 solid B units
(white spots) for three different values of the parameterx. The perimeter of the cluster and
the trapped particles are drawn in black. For a low but not negligible particle fraction, the
aggregation of A-particles is clear and leads to filamentary patterns with a radial symmetry
(see figure 1(a)). The shape of the growing B clusters is round as in the Eden clusters. For
x = 0.41, i.e. just above the thresholdx(e)

c of the static epidemic model, the cluster is still
found to grow for ever. A cluster growing at this concentration is drawn in figure 1(b).
Moreover, internal substructures are more tortuous. The surface is still round. When the
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fraction x of particles increases abovex = 0.41, one observes that the front becomes more
jagged (as seen in figure 1(c) for x = 0.56) indicating that the cluster has larger hindrances
to bypass. Some liquid regions of the lattice have not been reached by the growing front
but are surrounded by the B solid phase. It is of interest to know whether the growth stops
above some finite valuexc > x(e)

c .

Figure 2. The probabilityPN of finding a B cluster of sizeN as a function of the fraction
x of particles for clusters of sizeN = 20 000. Each dot was estimated by simulating 40
clusters. The inset presents the estimated critical valuexc(N) as a function of the cluster size
N . The continuous curve is a power law slowing down ofxc(N) towards the asymptotic value
xc(∞) = 0.56.

In order to estimate whether such a threshold exists, we have investigated the probability
PN(x) that a B-cluster can reach a finite sizeN . Figure 2 shows thex-dependence of this
probability estimated with clusters of sizeN = 20 000. A well marked transition occurs
at somexc(N) value close to 0.56 which is much larger than the epidemic threshold. The
transition looks a little bit sharper for higherN values (not shown) but we can consider that
the error bars are already short enough with such anN = 20 000 illustrated size.

We interpret the high value ofxc(> x(e)
c ) as a result of the aggregation phenomenon

occurring on the cluster surface. Indeed, the displacement of the particles along the front
and their aggregation leaves behind some voids. The distribution of trapped particles is not
uniform behind or along the front. Although the front is slowed down by the aggregates of
particles, the growing front can still be locally free of particles in between the aggregates.
The aggregation of particles and the growth are thus still both possible atx = x(e)

c ≈ 0.41
as clearly seen in figure 1(b). However, as the fractionx of particles increases, the
displacement of the particles becomes strongly limited by the presence of neighbouring
particles. Therefore, forx > xc, the accumulation of particles pushed by the interface is
more homogeneous along the front. The latter becomes blocked after some steps and the
growth stops. The ‘transition’ occurring atx = xc is understood to be the result of the
impossibility of easily moving a particle more than one lattice unit away from its original
location. Therefore, this creates a blocking front. This is in contrast to the epidemic model
in which the origin of the transition is due to the impossibility of finding an infinite path
through a random pattern of static particles. Thus, the physical origins of the transition in
the epidemic and the present model are ‘slightly’ different.

The size dependence ofxc(N) was examined for 102 6 N 6 105. The N -dependence
is drawn in the inset of figure 2. It seems thatxc(N) behaves like a power law and slows
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towards an asymptotic valuexc(∞) = 0.560± 0.005. This power law slowing down is
emphasized in the inset of figure 2 and holds over two decades. The exponent of this
slowing down behaviour was estimated to be 0.40± 0.03.

Finite-size scaling arguments of classical percolation [17] equate the connectivity length
ξ ∼ (xc − x)−ν with the cluster characteristic sizeN1/Df resulting in the relation

xc(∞) − xc(N) ∼ N−1/νDf ∼ N−0.4 (3)

This gives a direct measure of the productνDf . For x < xc(∞), the clusters of B units are
found to be compact and filling the available space such that the fractal dimension of these
is trivially Df = d = 2.

In order to findDf and ν, we have investigated how the resulting structure scales at
criticality (for x = xc(∞)). Radial density functionsρA(r) andρB(r) have been calculated.
They represent the probability of finding at a distancer from the centre of the lattice a
trapped particle A or a B unit respectively. We recall that the centre of the lattice is the
position of the initial growth site turned into phase B. Figure 3 presents the radial density
functionsρA(r) andρB(r) in a log–log plot averaged over 20 clusters ofN = 80 000 units
grown with a fractionx = 0.56 ≈ xc(∞). Because of the finite size of our clusters, the
radial density functions present a marked cut-off aroundr = 250. The density functions
are found for 5< r < 250 to be power laws for both the cluster sites B and the trapped
A-particles.

ρA(r) ∼ r−α

ρB(r) ∼ r−β
(4)

where the exponents are numerically found to be the same (α = β) over two decades. For
x = xc(∞), the ratioρA/ρB is found to be a constant and equal to aboutρA/ρB = 0.89.

A power law for the density function indicates that an aggregate is fractal with a
dimensionDf = d−α [18]. The fractal dimension of both the solid A and B phases are found
to be numerically the same, i.e.Df = 1.87± 0.03 which is close to 91/48 ≈ 1.896 within
error bars. With this value forDf , the critical exponentν is found to beν = 1.34± 0.08
(see equation (3)), a value which is close within error bars to the unconstrained percolation
exponentν = 4/3 [17].

One should note that for very smallr values, all sites contain a solid phase A or B
(whence no liquid) such that the relationρA(r) + ρB(r) = 1 is verified. The fractal growth
only occurs forr > 5 (see figure 3). Indeed, the first A-particles are easily pushed in the
earlier stages of the growth forming the first aggregates of phase A at a distancer > 0.
This explains whyρA(r) is very small for smallr values (see figure 3).

We have also investigated the evolution of the numbertA of trapped A-particles (particles
which are in contact with the B-cluster and which cannot move) as a function of the cluster
size N (see figure 4). Forx 6 xc(∞), the evolution oftA(N) in the growing cluster is
numerically found to obey the empirical relation

tA = cN − c′Nγ (5)

wherec andc′ are two parameters which are functions ofx only. The first term expresses
an increase in the number of trapped A-particles proportional to the sizeN of the bulk
B-cluster. The second term represents the aggregates of A-particles lying on the surface of
the growing cluster, particles which are blocking the front.

The sites in contact with the B-cluster are either L sites which are candidates for the
growth or contain an A-particle. Forx < xc(∞), both the number of site candidates for
the growth and the number of A-particles on the surface increase withN and behave like
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the perimeter size which is proportional toN1/2 sinceDf = 2. Forx = xc(∞), the growth
is critical and the total number of sites which are candidates for the growth is expected to
be roughly independent ofN . In this case, the number of A-particles lying on the surface
of a B-cluster is a power ofN with an exponent expected to be(Df − 1)/Df [18]. If the
number of trapped particles on the surface is proportional to the total number of A-particles
lying on the surface, this leads to an exponent

γ = (Df − 1)/Df (6)

expected to be exactly 1/2 forx below xc(∞) and 43/91 ≈ 0.472 for x = xc(∞).

Figure 3. Log–log plot of the density functionsρA(r) and ρB(r) for respectively the cluster
sites B and the trapped A-particles at the critical fractionxc(∞). Each dot is an average over
20 simulated B clusters of sizeN = 80 000.

Figure 4. Log–log plot of the evaluation of (c − tA/N), i.e. a function of trapped particle
concentrationtA/N as a function ofN for respectivelyx = 0.20, x = 0.41 andx = 0.56. Each
curve is an average over 40 simulated clusters.

Figure 4 presents a log–log plot of the evolution of(c − tA/N) as a function ofN
for x = 0.20, x = 0.41 andx = 0.56 ≈ xc(∞) respectively. Each curve results from an
average of over 40 clusters. Power laws are well observed and hold over more than two
decades. The exponentγ − 1 can be deduced. Table 1 summarizes the results of the fit
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of these three curves by the relation of equation (5). The agreement between the fittedγ

values and the expected values (1/2 and 43/91) from equation (6) is remarkable.

Table 1. The values of the parameters in equation (5) fitting the curves of figure 4.

x γ c c′

0.20 0.505± 0.015 0.25± 0.01 1.68± 0.05
0.41 0.501± 0.015 0.60± 0.01 1.95± 0.05
0.56 0.465± 0.020 0.89± 0.01 1.53± 0.08

In conclusion, we have introduced here an original mere two-dimensional model of
growing interfaces considering a short-range repulsive (UCJ-like) interaction between the
growing front and some chemically inactive particles. The model allows for many extensions
and applications in the epidemic, catalysis [9] and fluid spreading phenomena fields. For
example, the dissolution of particles will be considered in a further work. The growing
interface pushing the particles leads to a non-trivial aggregation phenomenon and to the
formation of non-trivial patterns made of trapped aggregates.

A transition between unlimited and limited growing clusters takes place at some particle
fractionxc(∞) which is larger than the static percolation valuex(e)

c of the epidemic model.
We have emphasized the different origins for the transition in the present and in the classical
epidemic model. For the epidemic model, the origin of the transition is the impossibility
for x > x(e)

c to find an infinite path through a random pattern of particles. For the
present model, the origin of the transition is the possibility for the particles to aggregate
sufficiently for x < xc in order to leave free regions for cluster growth. Forx approaching
xc(∞), the aggregation phenomenon is, however, found numerically to be driven by the
critical exponents of static percolation. The process is critical for both cluster growth
and aggregation phenomena and results in the fractality of the internal patterns made of
trapped particles. The fractal dimension of the pattern is found to be identical to that of the
cluster. The criticality (or the fractality) of the aggregation phenomenon was unexpected.
This critical patterning belongs to the universality class of two-dimensional unconstrained
percolation.

Beside these numerical results, we have seen the emergence of complex patterns
from rules not especially introduced for that purpose. Indeed the rules of the present
model consider only the growth and anUCJ-like mechanism. We recall that the action of
local physical rules on multiparticle (or species) systems can sometimes lead to collective
behaviours [19] as observed here. The latter processes can develop structures that appear
to have order on all length scales. Such resulting patterns and dynamic processes seem to
be common events in nature and in living systems. The present model could be replaced in
the general context of studying natural pattern formation.
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